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Methodology

We used 100 uniformly randomized parameters to scan the gradient and calculate the
gradient variance.
Use the ansatzes as the neural network to classify a dataset, and compare their
performance in terms of accuracy and objective function value. Using COBYLA
optimizer and MSE loss.

We employ three distinct methods for barren plateaus mitigation, and compare to a base
QNN (method 0). The three designs are compared against each other in their gradient
decay rate per qubits, and performance in a classification problem.

Objective
Provide the background information for
quantum computing, VQA and QNN,
which enables the definition of the
research question.
Define the BP problem and the causes
that would lead to this phenomenon.
Investigate several methods to mitigate
or avoid BP.
Compare advantages and disadvantages
of the identified methods to identify the
most appropriate approaches in different
circumstances

Introduction

The Parameterized Circuit design (number of qubits and circuit depth);
Randomized Parameters Initialization.

Barren Plateaus is the training difficulty that impedes Variational Quantum
Algorithm and Quantum Neural Networks training. If the gradient based
optimizer runs into Barren Plateaus, the Objective Function landscape
becomes flat, causing failure to converge.

We investigate and compare three different methods that counter barren
plateaus, which address the factors lead to barren plateaus in VQA and
QNN training:

Investigation of Barren Plateaus in
Quantum Neural Network Development

Quantum neural networks (QNN) are machine learning models that are inspired by the
workings of classical artificial neural networks, but which utilise quantum circuits for
their representation and a mix of quantum and classical training algorithms.

A common approach to implementing QNNs are variational quantum algorithms
(VQA), which take advantage of classical computation for the optimisation of a
parametrised quantum circuit to train QNN, while using quantum machines to model
the landscape of the loss function and efficiently estimate its gradient. VQA allows
training of well-designed QNNs to rapidly converge to a solution while avoiding many
problems present in training classical neural networks. QNNs, however, have their own
trainability issues, which can manifest in large variational QNN circuits, either due to
their depth, a large number of qubits, or poor initialisation of their parameters. One
such problem is the formation of large flat areas in the cost function landscape, called
barren plateaus, which impede effective circuit optimisation.
    
The methods of eliminating barren plateaus or mitigating their presence in circuit
optimisation have been proposed. However, the efficacy of each method in the context
of a given QNN architecture and the selected training data remains an open question.
This project, therefore, aims to investigate the effectiveness of different approaches to
mitigate the emergence of barren plateaus in various QNN developmental
circumstances. To this end, three different approaches were selected to deal with
barren plateaus and were then evaluated against different VQA quantum circuit
structures (depth, qubits and initialisation), initially using a random gradient
landscape and then on a sample classification problem.
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(Method 0) Base configuration
A general multilayered perception network with randomized
initial parameters and measurement for all qubits.

(Method 1) Altering Circuit design: Shallow depth, Local Cost
Function
Shortening the circuit and only use certain qubits instead of a
full measurement.

(Method 2) Altering Parameter Initialization: Layer-wise
Learning
Add one layer and train that specific layer to form the ansatz
and the initial parameters until we obtained the desired ansatz
length

(Method 3) Altering Circuit design and Parameters: Identity
Blocks
Forming an identity block takes two layers that inverts each
other. We obtain the ansatz and the parameters with this
strategy.



Method Vaiance Exponential fit

(Method 0) Base Configuration -0.62

(Method 1) Shallow depth, Local Cost Function -0.03

(Method 2) Layer-wise Learning -0.53

(Method 3) Identity Blocks -0.56

Method
Circuit
depth

(layers)

Parameter
s Count

Accuracy
at 150

Iterations

Accuracy
at 1000

Iterations

(Method 0) 
Base Configuration

123 105 60% 82.5

(Method 1) 
Shallow depth, Local Cost Function

21 20 75% 75%

(Method 2) 
Layer-wise Learning

123 105 82.5% 82.5%

(Method 3) 
Identity Blocks

100 100 77.5% 77.5%

Variance decay rates of four ansatzes

Loss function values of four classifiers

Accuracy score of four classifiers

Sampling Gradients Result
Overall, the ansatzes with the local cost function and restriction on circuit depth
have their variance values remaining higher and being more consistent for higher
qubit count. The ansatz with this treatment, therefore would not possess a barren
plateau. On the other hand, the values for the other cases shrink exponentially and
eventually, the near-zero gradient around the initial point will expand to a large
plateau.

Data Classification Result
While the unrestricted ansatz (Method 0) has produced better result at 1000
iterations, the other methods accuracy remain unchanged after 150 seconds. The
unrestricted method is likely to run into barren plateaus, therefore require more
optimization steps to converge.

The local cost function - shallow depth ansatz seems to be the best in overcoming
barren plateau as expected, and converge early. However it has high error rate due 
 to the shortened circuit.

The last two methods focused on the initial parameters while allowing longer
circuits, resulting in better capacity to learn. We can see that with the optimized
initial parameters, the ansatz has better accuracy compared to identity blocks
initialization. Thus they are suitable for designing ansatzes of higher layer count to
learn more complex functions. However, it would take more time to obtain the
optimal initial parameter due to the training process (see Methodology section).

Conclusion
The variance of gradients of parameterized quantum circuit can be stable if we
set a limit on length and the cost function.

The training performance can increase if we carefully select the initial
parameters.
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